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We have developed a hybrid (particle/f luid) computer code for the 
study of quasi-neutral micro-instabilities for inhomogeneous plasmas 
that are immersed in a magnetic field. The ions are treated in the fluid 
approximation, retaining perpendicular E x B and polarization drifts as 
well as the parallel momentum and ion temperature equations. The 
electrons are represented as particles with perpendicular E x B drifts 
and parallel kinetics, thus exactly describing the effects of trapped elec- 
trons and electron-wave resonances. The code may be used in the 
study of low frequency (w <-Qi where Di= eB/mic ) universal mode 
drift waves, ion-pressure-driven modes, or curvature-driven modes. At 
present we have implemented an electrostatic, two-dimensional,  slab 
geometry version of the code. The model has been tested extensively for 
sound-wave propagation, the collisionless (universal mode) drift wave 
real frequency and growth rate, the r/ i -mode real frequency and growth 
rate, and the fluctuation spectrum has been elucidated. As a nonlinear 
test case, we have also studied the nonlinear properties of the 
collisionless drift wave. © 1992 Academic Press, Inc. 

1. I N T R O D U C T I O N  

The expression "hybrid code" has come to refer to the use 
of both particle and fluid simulation models in a single 
computer code [1-6]. In plasma physics such a technique 
follows naturally from the fact that plasmas are composed 
of a number of different charged species; at the most basic 
level there are electrons present and one species of ion. The 
large mass ratio mp/m~ = 1836 between protons and elec- 
trons contributes to the presence of diverse temporal and 
spatial scales in the plasma. Ignoring for the moment issues 
relating to the propagation of electromagnetic radiation, the 
smallest length is the Debye length 2D = x~e/4~ne 2 in cgs 
units, where T~ is the electron temperature and n is the 
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electron number density, and the highest frequency is the 
plasma frequency e)e -- ~ .  The most natural form 
of hybrid model is to treat the electrons as a fluid and the 
ions as particles. This removes kinetic wave-particle elec- 
tron effects and also removes the 1 / x / ~  noise component, 
where Are is a number of electron macroparticles. This 
allows for further simplifications: in a sufficiently collisional 
plasma a simple Ohm's law may be used, or the electron 
inertia may be neglected in the electron momentum equa- 
tion. These approximations along with the imposition of 
quasi-neutrality np = n~ eliminate scales of order 2D and (o~ 
[ 1 ]. Also, the neglect of the electron mass further removes 
scales of the electron Larmor radius pe = v~/f2e, where v, is 
the electron thermal velocity and 12~=eB/mec is the 
electron cyclotron frequency. Furthermore, the Darwin 
approximation [2] may be imposed whereby the transverse 
displacement current is neglected and the speed of light on 
the grid ceases to impose problems of numerical stability 
[-2-5]. There are a number of realizations of the par- 
ticle-ion and fluid-electron approach. For example, the 
massless electron model has been exploited by Hewett [3], 
Harned [4], and Mankofsky et al. [5]. Another example is 
the quasi-neutral Darwin model due to Hewett and Nielson 
[6] that retains finite electron mass in the longitudinal 
component of Ohm's law. There are techniques, other than 
hybrid codes, for increasing the time and space scales of 
simulations: implicit or time filtering schemes, orbit 
averaging and sybcycling (many of which are discussed in 
the book "Multiple Timescales" [7]), and the gyrokinetic 
approach [8], which is based on physical equations that 
have been averaged over the ion gyroperiod. 

Our hybrid model, first proposed by Okuda [9], 
represents the electrons as particles and the ions as fluid. 
Okuda has sketched out the model, and we have coded it up 
as well as analyzed and tested its behavior. For the relevant 
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modes, quasi-neutrality over scales longer than the Debye 
length is assumed, the typical frequency co is taken to be 
much smaller than the ion Larmor frequency £2 i = eB/rnp c, 
and the wavelength 2 long compared .with the ion Larmor 
radius Pi = vJg2i. Our model retains the electron particle 
equation of motion in the direction parallel to an ambient 
magnetic field. We assume a vanishingly small electron 
Larmor radius so that the perpendicular guiding center 
motion in two-dimensional slab geometry can be handled 
with E × B drifts. The magnetic field gradients are small so 
that the gradient-B drifts are negligible. We have also as yet 
not included curviture drifts in our model. This model is 
similar to that of Lee and Okuda [10], who treat the ions 
fully kinetically. It is also similar to the approach of 
D'Ippolito and Davidson [ 11 ] who represent the electrons 
in the same way as we do, but use a full Vlasov treatment of 
the ions. Our model is at present electrostatic, although we 
are aware of work in progress to make a similar electro- 
magnetic model [ 12]. 

The treatment of the ions is essentially the same as in 
reduced magnetohydrodynamics [13], so the new feature 
here is the representation of the electrons as particles. This 
may be used for cases where electron kinetic effects, such as 
parallel wave particle resonances, or trapped particles are 
important, while the ion response is fluid-like. In cases 
where ion Landau damping is important, this may be 
approximated using artificial viscosity. However, accurate 
treatment of ion Landau damping ion modes in complicated 
geometry, or the complete finite Larmor radius treatment of 
the ions are not included in this model. 

In the following section the electrostatic model equations 
are described and the numerical algorithm outlined. 
Section 3 describes extensive tests that were made to verify 
sound wave propagation, the real and imaginary frequency 
dispersion relations for the collisionless drift wave (univer- 
sal mode) and t/i-mode drift wave, and also the fluctuation 
spectrum properties of the code are elucidated. Finally, in 
Section 4 we consider the nonlinear drift wave instability. 
Drift waves have been studied computationally using both 
kinetic [14] and fluid [15] treatments. In our case we 
compare the results between the hybrid model and a full 
dynamics ion model for the case of the collisionless drift 
wave instability. 

min(~, + (VE+ vlrib).V) viii= -en  VH¢ - V I I P  i (2) 

3 
~(c~tW(vE+Vllib).V) Ti+ TiVllVlli=O, (3) 

where ni = ne = n, and no is the unperturbed density, ¢ is 
the electrostatic potential (cgs units), vii i and vii e are the 
respective ion and electron velocities parallel to the 
magnetic field direction b = B/B; the electron velocity will 
be obtained by averaging electron particle velocities. The 
electron and ion temperatures are T~ and Ti, while Pi = nTi. 
Also, ps=cJl2i ,  c~=x/-T-[/m i and the perpendicular 
velocities are 

vE = ~ b x V~p (4) 

C 
¥Di ----- VE + 7 b x VPi. 

e/~n 
(5) 

In Eq. (1) only the dominant convective nonlinearity is 
retained. This equation represents the charge balance that 
maintains quasineutrality. In the low frequency regime 
co < g2~, the ions perform E x B as well as polarization drifts 
in the perpendicular direction. The latter is responsible for 
a charge separation which is cancelled by the parallel 
motion of the ions and electrons. 

Horton et al. [17] assumed Boltzmann electrons, that is 
~e=no(eq~/Te), however, in our model the electrons are 
treated as macroparticles. The parallel dynamics are 
followed using the single particle equation of motion, and 
the perpendicular velocity is (cE x B/B 2) [10]: 

d 
me ~ ¥[Iq ~-" e Vip (~(Xq) ,  (6) 

c 
¥±q = ~ b x V(p(Xq), (7)  

d 
dS x q =  V ±q + Vl[q, (8)  

where the subscript q refers to individual particles. The 
electron parallel velocity moment and the density that 
are needed in Eqs. (1) and (2) are evaluated using the 
subtracted dipole method [22]. In generalized notation 

2. MODEL EQUATIONS AND ALGORITHM 

The ions in the model are treated in the same way as for 
reduced magnetohydrodynamics [13, 16]. Our equations 
follow closely from Horton et al. [17], as well as from 
Ref. [ 18-21 ]. In the electrostatic case where quasineutrality 
is assumed, the fluid equations are 

2V .V)V± ~ =Vlin(%o--Vlle) (1) p~ . .no(a, + YDi 

and 

n(xG) Vlle(X~) = ~ VlIqS(XG - Xq) (9) 
q 

n(x6)  = Y~ S(xG - Xq), (10) 
q 

where S is the particle-grid weighting function, and XG is a 
grid-point position. The field equations (1)-(3) can then be 
solved for on a spatial grid. 
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The geometry is sheared slab. Figure 1 shows a schematic 
with the "radial" coordinate in usual Tokamak geometry 
taken to be in the x-direction. The scale lengths for the zero 
order density and ion-temperature profiles are L.  and L r, 
respectively. When considering modes driven by ion-tem- 
perature-gradient (r/i-mode), the quantity r/ i=Ln/Lr is 
defined in order to parameterize the relative scales. The 
magnetic field is at an angle O(x) in units radian to the 
z-axis; when we refer to the shearless case, 0 is taken to have 
no x-dependence. Also, when we refer to the one-dimen- 
sional version of the code, only variations in the y-direction 
are retained. The two-dimensional version has variations in 
x and y, while for both of the realizations kit = k i  tan 0. 

We have normalized Eqs. (1), (2), (3), (6), and (7) 
according to the following procedure: t' =e)et,  x' =x/A 
(where A is the finite-difference grid spacing), n ' =  n/no, 
E ' =  (e/mca)~A)E, q~'= (e/m~co~A2)q), B ' =  eB/(meCa~e), 
vll i = Vui/e)oA, and Ti'= Ti/m~o)~A 2. In the new variables 
(without the primes) the vorticity (U = V~ ~0), parallel ion 
momentum, and the ion temperature equations can be 
rewritten 

cos 0 cos 0 
a,u= - - -~-  [~+P, u] - - -~-  [axP, ax~] 

COS 3 0 [ayP, C3y¢qg] + B2Vlln(Vlli--Vlle) 
7 

(11) 
cos  0 

63trill = - - - -  [(p, l)lli] --VllV~li/2 B 

- V u q ) -  VliP (12) 

cos 0 2 (13) 
c~,Ti= - - 7  [q~, Ti]  --Vll iV[i  T i - -  ~ TiVllVll i ,  

where g u -= sin O(c~/@), [f,  g] = ( S x f  C~yg- c~yfSxg), 
P = nTi and ~ = Tc/Ti. These equations closely resemble the 
electrostatic version of the four-field model of reduced 

FIG. 1. 
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The schematic sketch of sheared slab configuration. 

magnetohydrodynamics [16]. The second and third terms 
in the vorticity equation, Eq. (11), arise from the spatial 
variation of the diamagnetic drift, and are neglected here. In 
Eq. (11) the linear contribution due to the presence of 
external density and temperature gradients comes from 
the Poisson bracket - ( c o s  O/B)[P, U]; this contributes a 
term (VD/'C)(I + r/i) COS 0 63yU, where /)D = Te/(BL,) in nor -  
m a l i z e d  units. In Eq. (13) the bracket - ( c o s  O/B)[~o, Ti] 
contributes a term - (VD/Z) r/i COS 0 8y~0. 

We now present an outline of the algorithm that is 
employed. The time advance is performed in two steps, the 
first of which calculates quantities at a half timestep so that 
they may be used to advance the equations in a time-cen- 
tered way. Therefore, the implementation is second order 
accurate in time. Start off with U n+l/2, (pn+ 1/2, Vllin+l/2, and 
T7 + 1/2 for the ions, and v I~q and Xq ÷ 1/2 for the electrons; the 
superscript fixes the time level where t = n A t and A t is the 
code timestep. The algorithm is finite-difference in space as 
well as time, however, the vorticity is inverted using a fast 
Fourier transform (FFT) to obtain q). All of the perturbed 
quantities are periodic in the x- and y-directions, and they 
are solved for on a common grid, that is, there are no inter- 
leaving meshes. We have used the subtracted dipole particle 
interpolation scheme [22], and this is known to have dis- 
continuities in the effective particle weight function S. To 
reduce the resulting noise in the calculation of q~ from the 
velocity moments we employ a spatial filter. Since the FFT  
is used to invert the vorticity we perform the filtering in 

2 2 
Fourier space using a form factor e -kia . In all of our work 
presented here we have taken a = 1.5 A, that is, we strongly 
filter only the highest k± modes. Note that this does not 
affect the resolution of wave-particle resonances for which 
kl lveAt< 1 (v e is the electron parallel thermal velocity) 
since the corresponding perpendicular wavenumbers k± = 
kqjtan 0 are not filtered out. 

2.1. Iion Half  Step 

(i) First, calculate the electron velocity at the half step, 

v.+ 1/2 . (At/2) e q~n+ l/2(Xq+ 1/2). 
ilq = / ) l l q  "1- VII 

Then the velocity moment n n + 1/2,,~ + 1/2 and density n" + 1/2 Vile 
can be calculated using Eqs. (9) and (10). 

(ii) Advance the vorticity, ion parallel velocity and 
temperature one half step. From Eqs. (11 )-(13) we write 

U.+ 1 = U.+ 1/2 + (At/2) 

× f l ( U  n+ l/2, qo n+ l /2 ,nn+ l /2 .n+ l / 2  rln+ l/2.n+ l/2) 
viii , Vile 

q~n+l = (V~)- '  U-+'  

n + l  __ n+1/2 viii - -v i i i  + (At/2)f2(v~l+l/2, qo "+1/2, n.+l/2T,~+1/2) 

T'~ +1 = T'~ + 1/2 + (d t/2) f3(T'~ + 1/2, q). + 1/2, ,,. + 1/2 viii y. 
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2.2. Ion Full Step 

(i) First, advance the electron velocity one full step in a 
time-centered manner: 

n + l  n 1) [[q = Vl[q "3V At e Vii q0 "+ 1/2iXq ÷ 1/2). 

Then, in order to calculate "+ 1 . + n vl~ . we need to predict 
Xq + 1 

At~wn+l/2 n + l  n Xq"+l=Xq"-m+(3/2)~ot.±q +0.5(vii q +Vllq) }. 

(ii) Advance the vorticity one full timestep, 

un+3/2=un+l/2_}_Atfl(Un+l, fpn+l, nn+l Vii±n÷1 , n n + l  l)[i en+l ) 

(pn+3/2 = ( V 2 ) - - I  vn+3/2. 

The fluctuation energy k spectrum is also calculated in 
Appendix A. The contribution from the high frequency root 
cok = _+0 x/f2el2i in the long wavelength limit [k±ps[ '~ 1 is 
shown to be 

1 /(2i'] 2 
W(k)=~\-~i ] Te, (15) 

where co± = x/4~rNoe2/mi, and No is the number density per 
unit length in the y-direction for a one-dimensional calcula- 
tion. Therefore, the noise is down by a factor (g2i/coi) 2 com- 
pared with a fully electrostatic simulation that does not 
assume charge neutrality. This is the same result as obtained 
by Krommes et al. [24] for the gyrokinetic model. For 
Ik±psl "> 1 we obtained 

(iii) Then in order to calculate n n+l accurately and to 
advance the electron position we use a two step process: 

Aq, vn +pred3/2 = Xq + 1/2 _.[_ 2 d t { v ~  + 1/2 + 0.5(v~f~- 1 + v~ I q)}. 

This enables us to evaluate ,," ÷ 3/2 and then, " ± q  

Xq,n+lcorr = X q " + l / 2 + ( 1 / 2 )  A t { v ~ , + l + 0 . 5 ( V ~ q ' / 2 * ' " + 3 / 2 ) } - -  V±q 

Xqn+3/2 :xqnWl/2-l-Atfvan÷l. ~ ( . ] ] q  -'~ 0.5(Vn ~ 1/2 "q - V±qn+3/2 )}. 

(iv) Finally, the ion parallel velocity and temperature 
are advanced one full timestep: 

n + 3/2 = /)~[~-1/2 ..{_ z~t f2(vT,. +, 1, ~o,+ 1, nn+lTl +1)  viii 

Tn + 3 /2 .  = Tn+l/2+Atf3(Tn+l,. ( p n + l  /311 in+l ). 

3. VERIFICATION OF THE ALGORITHM 

3.1. The Fluctuating Energy k Spectrum 

The principal tests on the code have involved verifying 
properties of the real and imaginary frequencies of the linear 
normal modes, and elucidating the fluctuation spectrum. A 
test-current analysis of the linearized equations is shown in 
Appendix A. The resulting dispersion function is 

2 2 

e(k, co)= k2p~ 1 - w * i ( l + q i )  °92 
co - ~ k~, c~/~ 

×(1 co*  !( co- o.o )) 
- 

( °:)( o )} 
+ 1 -  ~ l + v / ~ k l i G Z  , (14) 

where Z is the Plasma Dispersion Function [-23]. The dis- 
persion relation equation ~(k, co)= 0, then determines the 
linear normal modes of the system. 

W(k)=~(~ i~2re / (k±ps)2 ;  
\Oi} 

(16) 

the k-dependence appears to be unique to the hybrid model. 
Three test runs were performed using a one-dimensional 

version of the code (#y ¢ 0), without the presence of the 
convective nonlinearities. In the normalized units that 
were described in Section 2 the common parameters were 
0 = 8.727 × 10 3(0.5°), r = 100, coe At = 5, and there were 
4000 timesteps. The electrons were loaded with a 
MaxweUian parallel velocity distribution with thermal 
velocity G = 1.5. There were 128 gridpoints in the y-direc- 
tion and 160 simulation particles per gridpoint. For case (a) 
m~/mi=l/lO0, B=10,  that is (Oi /co0=l ;  case (b) 
mdmi= 1/1600, B =  10, that is ((2i/coi)= ¼; and case (c) 
me/mi = 1/100, B = I, that is (f2i/coi) = 1@ Figure 2 shows 
the log plots of the normalized spectrum W'(k)= 
W(k)/(TJ2) for cases (a), (b), and (c). For reference, 
the curves (Oi/co02/(1 2 2 +k±ps) are plotted along with 
the numerical points. The correspondence is excellent 
indicating that the wavenumber dependence is most likely 

2 2 1/(1 +k±p~). We tried a number of different analytical 
methods but were unable to prove this from the model 
equations; we could only show the correct behavior 
Eq. (16) in the short wavelength limit. At large values of 
k±p s the finite particle size effects, and imposed filtering 
causes the observed discrepancy. Note that for [k±ps[ ~ 1 
the above analysis gives for the spectrum of ion acoustic 
waves W(k) = ½ (£2i/coi) 2 Te(k±p~) 2, which is smaller than 
the measured spectrum. For Ik, p~[ ~> 1 the result is W(k) = 
½ (Oi/coi) 20(kip~) 3, which is also relatively small in the 
range of interest and clearly would be cut off by particle-grid 
effects and filtering at very high Ik± p~ [. Finally, we note that 
the case (a), g2i/coi = 1, is unphysical in the sense that it 
violates the quasi-neutrality assumption. We simply regard 
this case as a test of the code algorithm against the analyti- 
cal model. 
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FIG. 2. The logarithm of the normalized fluctuation spectrum W'(k) for (a) 12i/mi = 1, (b) Qilcol = ¼, and (c) Oi/mi = 1. 

3.2. Sound Wave Test 

The normal  modes of the plasma are solutions of the 
equat ion e(0), k) = 0. The ion sound wave dispersion rela- 
tion arises from taking the limit of Z for Bol tzmann 
electrons I0)/kilvol ,~ 1: 

Z ~  - x f2  0) + i ~/-~. (17) 
AliVe 

With this, and for a homogeneous  plasma ( r / i=~o .e=  
0).i = 0), we get 

(( ..)' ' 1 +  ( l + k ± p . )  +-~k~v~. 0) 2 = k~l cs (18) 

The first tests on the code were conducted in the limit z ~ 1, 
so that for k~ ps 2 < 1 we get the usual result 0) = +kll c s. 

Once again, a one-dimensional linear version of the code 
was used. Other  relevant parameters  are 0 = 8 . 7 2 7 ×  
10-3(0.5°), me/mi=l-~ ,  B = 1 0 ,  z - -100 ,  ¢ o e A t = 2 0  , for 
8000 timesteps. Two cases were considered, where the 
electrons were initialized with thermal velocities v~ = 1.5 
and 2.5. There were 512 gridpoints and 40 simulation 
particles per gridpoint  were used, a l though good results can 
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be obtained with somewhat fewer than this number. The 
numerical accuracy of the code is mainly determined by the 
electron streaming condition kllmaxveAt< 1. This deter- 
mined the choice of 0, G, and At; for the above parameter 
k l im,xGAt= 1.5 for (G=2.5) ,  so for the tests we are 
operating at the limit of stability. The main reason for 
pushing this limit is to obtain a long enough time sample in 
order to resolve the sound wave frequencies. In normalized 
units we have c~=0.15 and ps = 1.5 (for G = l . 5 ) ;  and 
G = 0.25 and p~ = 2.5 (for Ve = 2.5). 

The dispersion relation of the code algorithm itself is 
found by evaluating the fluctuation spectrum W(k, o9) of 
the homogeneous plasma. Intuitively, it can be seen in 
Eq. (A14) that this quantity peaks at the zeroes of the 
dispersion relation. For  G=0.25 ,  and mode number 
m = 15(k± = 2nm/512 = 0.184, or klj = 1.606 x 10-3), Fig. 3 
is a plot of the W as a function of co, showing distinct peaks 
close to ++kllG= _4 .02x10  -4. Figure 4 shows the fre- 
quency plotted against kll for G = 0.15 (o), and c~ = 0.25 (x). 
The solid curves also show the theoretical result obtained 
from an exact solution of Eq. (14). That the small kll 
behavior satisfies o9 ,,~ +kll Cs indicates that the kinetic elec- 
trons have Boltzmann-like behavior (fie~no = e~o/T¢) in the 
appropriate regime. The asymptote at high wavenumber 
can be obtained from the dispersion relation in the limit 
Ik±p~[2 >> 1; in that case it is o ) =  -+(kll/k±)f2 i = 
_+8.727 x 10 -4, and this is clearly shown in Fig. 4. We note 
that this is a pathological limit in the sense that large [k~ p~ [ 
is inconsistent with the analytical model. Practically 
speaking, one needs to run with sufficiently many modes so 
that k± minPs(=0.018) is much smaller than unity. 

3.3. The Collisionless Drift Wave Test 

For the second test we reproduced the collisionless 
drift wave instability (universal mode) is shearless 
(kll/k ± = const.) geometry. In this case a density gradient 
inhomogeneity along with finite electron temperature 

0 0.5  1.0 
kll (xlO "2 ) 

FIG. 4. The sound-wave dispersion relation for G=0.15 (o) and 
0.25 (x). 

provides the free energy for a growing electrostatic wave 
with k l l / k ± ~ l .  The dispersion relation is established 
theoretically by retaining the o9,¢ term in Eq. (14), and sub- 
stituting both the real and imaginary parts of Z, where 
]og/kriv¢[ ~ 1 from Eq. (17). Then in the limit z>> 1, 

e = k ± p ~ -  (.o2 t- 1-- l + i  . (19) 

Next write e = el + i~2, and the real frequency of the mode 
is obtained approximately from el = 0, that is, 

0)2(1 2 2 + k~ Ps) - -  o9o9 $ e - k~[ c s 2 - 0 . -  ( 2 0 )  

This is the standard form; for example Kadomtsev [25, 
Eq. (IV.37)]. There are two solutions which asymptote to 
the sound wave o9= +kllcs for large values of kuc s. For 
Ikij GJ < o9,~ the positive frequency solution is relevant, 

2 2 ogk = o9,¢/(1 + k±ps). (21) 

w(w) 

o 
-4 -3 -2  -I 0 

¢,0 
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i 
i ' 

The growth rate for this mode can be approximated from 
? = -e2/(&l/t3o9) for co = ogk; this gives 

/ ~  2 2 2 = o9,¢ k±p~ 
b.2 213 '  7 ] k l l l G ( l + , ~ l p s  ' 

(22) 

corresponding to the expression derived by Krall and 
Trivelpiece [ 26, Eq. (8.16.11 ) 3. 

The collisionless drift wave is implemented in the code 
using the multiple scale approach of Lee [8 ]. This amounts 
to adding a velocity vyto the perpendicular electron velocity 
Eq. (7), 

C FIG. 3. The fluctuation spectrum W(k, ~o) for a homogeneous plasma vf= ~ b × q92/L,. (23) 
with cs = 0.25 at k u = 1.606 x 10-3. 
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This velocity accounts for the density gradient in the 
x-direction, therefore the linear tests may be done using the 
one-dimensional version of the code. We note also that for 
two-dimensional runs where the multiple scale approach is 
used, the boundary conditions on the field and particle 
velocities can be made periodic in both the x- and y-direc- 
tions since they represent quantities with the zero order 
inhomogeneity taken out. 

Figure 5a shows the real frequency, obtained once again 
from the fluctuation spectrum as a function of k~. This is 
done for two different values of pjL,=O.O175 (x), and 
0.035 (o). Also, in normalized units B = 1 0 ,  re=2.5,  
m e / m  i = i ]-~, r = 100, 0 = 8.727 × 10 3(0.5°), we At = 10, for 
8000 timesteps. There were 512 gridpoints in the y-direction 
and 40 simulation particles per gridpoint. The numerical 
solutions of the full dispersion relation Eq. (14) are shown 
also. Note that the trailing off of the values for large k± 
probably arises from finite particle and filtering effects. 

The growth of the mode is manifest as an increasing elec- 
trostatic field energy. The growth rate, for ps/L,  = 0.175 is 
shown in Fig. 5b as a function of 0 in degrees of arc. Note 
that the quantity ps/L,  is increased here so that the 
instability drives a measurable increase in the electrostatic 
energy. We also used a smaller timestep, (D e At = 4, in order 
to accurately resolve this growth over 500 timesteps. The 
peak growth occurs for 0 ~ 0.5 °. An estimate for the value 
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FIG. 5. (a) Collisionless drift wave real frequency dispersion relation. 
(b) Collisionless drift wave growth rate. 

can be obtained from the electron-wave resonance condi- 
tion co, e/kll Ve = 1 ; from this we get the condition (kll/k ~ ) = 

(pJL~)  ~ ,  or 0 ~  1L Once again the theoretical 
results from the dispersion relation is shown. The main 
significance of this test is that the kinetic wave-particle 
resonance in the universal mode is well represented by the 
code. 

3.4. The q~-Mode 

We now consider the situation where both density and 
temperature gradients are present in the system. We define 
rli= Ln/L T as a measure of the relative magnitude of the 
temperature gradient drive compared with the density 
gradient. Once again take the approximation Ico/kHvel ~ 1 
for the electrons, then the dispersion function (14) becomes 

a 2 (  co,i(1 + r/i)) 
e = k ± p  s 1 

co 

2 2 

(24) 

This can be solved analytically in several regimes. For  
k2p  2 ~ 1, ]co,i~li] > Icol, and Icol > ICO,el, which we can 
regard as the r/i>>l regime, the solution is co3= 

2 2 k~i v~co. Neglecting the second term for -k l l  c~ co,ir/i + (2/3) 
r >> 1 we have the same result as discussed by Kadomtsev 
and Pogutse [27], 

2 g . 2 0 ]  . / q . ] 1 / 3  co= ( - k  i~s~,  ..... . (25) 

In our geometry co,~ < 0 so that the pole with the positive 
growth rate is co= ( - 1  + i , , /3)/2 Ikllcsl 2/3 1co,it/i[ ]/3. For 
the case where [co[ < [co,el, or r/i < 1 the solution is 

(26) 

2 When This root will have a growing part for r/i > ?]crit = 3-  

[co,i~h] < [col the situation reverts back to that which was 
described in the previous section. Thus, when ICO,e [ ~ Ikll Cs I 
there are three roots co = 0, +kll Cs, the latter corresponding 
to the sound wave. When ]co,e 1> I kllcsI the positive branch 
(kiics) turns into the unstable branch of the universal drift 
mode. 

Next consider the case of finite Ik±ps[ 2. The important 
2 2 new contribution comes from the term k x p  s co,i(1 + r/0/co 

which is traceable back to the term VDi" V in the polariza- 
tion drift (due to the inclusion of finite ion mas) in Eq. (1). 
When ]k±p~l is greater than unity the solution to Eq. (24) 
is co = -L-(klJk±)~2i, so the r/i-mode instability is shut off 
and the same unphysical asymptote is reached as for the ion 
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sound wave. An approximation for when the above term 
becomes important, and thus the largest growth rate is [17] 

k.p~,~ 1/~1  -~- r/i" (27) 

The value of kll/k , for the highest growth rate may be 
estimated by considering when the sound wave frequency 
approaches the solution (25); thus 

kll/k , = rhp~/L .. (28) 

This is somewhat larger than the value (p~/L,) x/--~/mi for 
the universal drift mode, and is indicative of the diminished 
role that electron-wave resonance plays in the qi-mode. 
For  typical parameters p~/L,=0.175, r/i=2, Ps =2.5, 
m e / m i = i ~ ,  and z =  1, this estimate gives 0=0.35(20°),  
whereas the optimum angle found from an exact solution 
of the dispersion relation is 0=0.105(6°). Combining 
Eqs. (25), (27), and (28) the largest growth rate can be 
estimated 
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This turns out to be about five times too large for the values 
quoted. 

We note here that close to the critical r/i, the value of 
k . p s ,  Eq. (27), becomes large. This is once again a regime 
where the analytical model breaks down; a full treatment 
needs to accurately include the finite Larmor radius of the 
ions as with the gyrokinetic model [8].  Therefore, the test 
cases near marginal stability are once again considered to be 
tests against the analytical model. Our code may be used to 
study the r/i-mode away from the marginal case. This is, in 
effect, a kinetic electron model that parallels the analytical 
work done by Lee and Diamond [28 ], where they assumed 
a Boltzmann electron model. 

The real frequency part of the dispersion relation was 
tested in the same way as in the previous sections, using the 
fluctuation spectrum. A long time sample is needed in order 
to pick up the real frequency, so we took t h = 2.0, that is, 
close to marginal stability. The other parameters were 
ps/L, ,=O.Oll ,  B = 1 0 ,  Ve=l .5 ,  0 = 8 . 7 2 7 × 1 0  3(0.5o) ,  
m e / m  i : 1 ~-~, v = 1, c% At = 3.0, for 8000 timesteps. We ran 
the linear one-dimensional version of the code with 512 
gridpoints in the y-direction, and 40 simulation particles per 
gridpoint. Figure 6a shows the plot of cot versus k±. The 
two solid curves show the roots with negative real fre- 
quency. Superimposed on these waves are the points 
obtained from the fluctuation spectra, showing significant 
discrepancy at high k ,  due to finite particle size effects and 
filtering. Figure 6b shows the growth rate versus k ,  for 
p~/L,=O.175, r/i=16, B = 1 0 ,  re=2.5,  0=0.105(6°),  
m~/mi = ~ ,  z = 1, e), At = 0.25, and 2000 timesteps. The 

0 .\_ t 
o 0'5 ~.o 

FIG. 6. (a) ~h-mode real frequency dispersion relation. (b) The 
ql-mode growth rate. 

curve is obtained from the exact solution of the dispersion 
relation, while the points are obtained by running the one- 
dimensional code. It was necessary to impose an initial per- 
turbation on the parallel ion velocity (~0.1vi) in order to 
observe this instability. This was done at the various values 
of k± for which the points are shown in the figure. Note that 
here we have carried out a test of the linear model. We have 
not done extensive work on the modification to the 
Boltzmann electron model when kinetic effects are included, 
nor have we studied the nonlinear r/i-mode. However, some 
initial discussion on these issues was presented in Ref. [29]. 

4. NONLINEAR COLLISIONLESS DRIFT WAVES 

We have made a number of nonlinear runs for the colli- 
sionless drift wave. The E × B nonlinearities that are present 
in Eqs. (11), (12), and (13) are included. These terms are 
coded in space centered finite difference form. This tech- 
nique causes a slow nonlinear instability to develop; to quell 
this, an artificial viscosity term vV~_ F is added to the right- 
hand side each of the three equations, where F is U, vii i and 
Ti respectively. For  the runs that we will present here, 
v = 10 -3 in normalized units in chosen small so as not to 
substantially alter the results for the important wavenum- 
bets in the problem. We have also coded the nonlinearities 
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in upwind difference form [30], as discussed in Appendix B. 
The results are unchanged; this weak dependence on dis- 
sipation in the problem is due to the fact that relatively few 
low k±-modes are being excited. For the results presented 
here the parallel nonlinearities have been left out, although 
we have found their inclusion not to alter the results 
significantly. 

For the purpose of comparison we first show the results 
obtained from a code that treats the ions as full dynamic 
particles, and the electrons as drift kinetic particles [10]. 
That is, this differs from the hybrid model in the treatment 
of the ions. Also, the density gradient is treated self- 
consistently, whereas in the present code the multiple 
scale approach is used; refer to Section 3.3. The parameters 
of the run were B =  10, v~=2.5, 0=8.727x 1 0 - 3 ( 0 . 5 ° ) ,  

me/rni = ~-~6, Ps/Ln =0.175, m e At=4, for 1000 timesteps, 
the number of gridpoints in the (x, y)-plane (Nx, Ny)= 
(64,32), and the simulation particles were initially 
uniformly distributed in a grid on the (x, y)-plane 
(NP~, NPy)= (512, 64). Figure 7a shows the time history 
of (EZ/47znkT>, the volume averaged electrostatic energy. 
The linear growth phase is clearly seen, and this corre- 
sponds to the point in Fig. 5b where 0 = 8.727 x 10-3(0.5°); 
at co, t = 1600 the mode starts to saturate. Figure 7b shows 
the density profile at oget = 0 and 4000. The instability 
modifies the profile; crudely, it can be seen that gin ,~ 0.25, 
and this compares with the mixing length estimate 

l/k± Ln = 0.35. Figure 7c shows a three-dimensional plot of 
the mode amplitude [~o(kx, ky)l at coet=4000, and (d) 
shows a corresponding contour plot of q~(x, y). The most 
obvious structure occurs at (/, m)-= (1, 0), where kx= 
2rcl/Nx and ky = 2ztm/Ny. 

Figure 8 shows the electrostatic energy for the hybrid 
model where the E x B ion nonlinearities in the fluid equa- 
tions are included (a), and where they are left out (b); the 
parameters for the runs are same as for that described in 
Fig. 7. The first graph corresponds to the run shown in 
Fig. 7 for the full dynamics model. The linear growth rate 
appears to be only slightly higher, and the final saturation 
energy level is the same within a factor of two. It is not clear 
whether the differences lie in the use of the fluid ion 
approach, or in the use of the multiple scale method for the 
density gradient. The saturation level for the case of linear 
ions is about five times higher, and this would appear to be 
significant since the runs are otherwise identical in the 
hybrid model. Figures 8c and (d) show the electron density 
as a function of x with and without the ion nonlinearities, 
respectively. This is shown for times coo t = 0 and toe t = 4000. 
Note that the density gradient has been separated out of the 
problem as an external drive (multiple scale), so the initial 
profile is fiat. For case (c), g/n = 0.37, and this compares 
with the mixing length estimate 1/k±Ln = 0.35. Note that 
this indicates that the same saturation mechanism via 
profile modification is acting here as in the case of the full 
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FIG. 7. (a) The electrostatic energy, normalized to the total particle energy, for the standard collisionless drift wave using the model containing full 
ion dynamics. (b) The electron density profile at co e t = 0, and 4000. (c) The spectral amplitude [~ (kx, ky)l at roe t = 4000, and (d) the corresponding 
contours of  ~ (x, y); (p max = 4.1, ~ ~n = --4.1. 
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plots of spectral amplitude r q (kx, ky)] at toe t = 4000; (g) shows the contour plot of q~(x, y) for nonlinear run, ~0 max = 6.5, tp m~. = --6.4, and (h) shows 
the contour plot of ~0 (x, y) for the linear run, ~0 max = 9.8, @ min = --10.7. 

dynamics  treatment. Figure 8e and (f) show respective plots 
of  I~0(kx, ky)] also at c~ e t = 4000. The impor tant  difference is 
that  when the ion nonlinearities are absent the dominan t  
ampli tude occurs where the linear growth is strongest; 
namely for (l, m ) =  (0, 1), (1, 1), and ( 1 , - 1 ) .  However,  in 
the nonlinear  case (e) there is a dominan t  mode  at (1, 0), 
and this is the same mode  that was present in the full 

dynamics description. This structure is primarily associated 
with the vorticity equat ion (11), and has been discussed in 
related work [31] .  The nonlinear term propor t ional  to 
kl x k2-/;  tends to "rotate" the spectrum in the (kx, ky) 
plane as we have found. Figures 8g and (h) show the respec- 
tive contour  plots of ~0(x, y)  at the same time. It can be 
clearly seen how in the linear case the dominan t  mode  has 
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kx = 0, but for the nonlinear case there is a predominance of 
ky = 0, that is (1, 0). A number of other runs have been 
performed with the E x B nonlinearity removed from the 
electron dynamics; these are basically one-dimensional 
runs. Details have been presented alsewhere by the present 
authors [323, and we note the work of Horton [33] who 
has presented theoretical arguments for the importance of 
this nonlinearity as a saturation mechanism. In our case it 
was found that with or without the ion nonlinearities these 
runs failed to saturate. The electrostatic energy ( E 2/4~nkT) 
grew to unity and thereafter the parallel electron distribu- 
tion function f(vtt) become grossly distorted. The runs 
either became excessively noisy, or they were halted when 
particles moved out of the physical domain. 

5. CONCLUSIONS 

We have developed and tested a new computer algorithm 
for the study of low-frequency plasma instabilities. The elec- 
tric potential is obtained from the vorticity equation (11), 
as is done for the reduced magnetohydrodynamics model 
[13, 16]. Here the important physics comes from the 
perpendicular polarization drift, due to the finite mass of the 
ions; through the continuity equation, quasineutrality is 
maintained by balancing this drift with the parallel motion 
of both ions and electrons. The new features are that the 
parallel electron motion is treated kinetically (i.e., not 
adiabatically) so that wave particle resonance effects, and 
the electron nonlinearity are included. The code was tested 
for ion sound wave propagation, and it gave the correct 
linearized t/i-mode dispersion properties. These are impor- 
tant tests for the fluid-ion and Boltzmann-electron proper- 
ties in regimes where they should apply. We also tested for 
the collisionless drift wave dispersion properties; here the 
kinetic properties of the electrons play an important role. 
The long-wavelength fluctuation spectrum is proportional 
to ½(f2i/coi) 2 Te per mode, where the factor (ff2i/O)i) 2 
indicates the low-noise character of the algorithm. This is 
the same as the result obtained by Krommes et al. [24] for 
the gyrokinetic model. We note our use of the vorticity 
equation to obtain the electrostatic potential in terms of the 
parallel derivative of the current, whereas in conventional 
electrostatic codes the potential is obtained from Poisson's 
equation. The measured fluctuation spectrum of the code 
does not exceed the theoretical estimate; only at high 
wavenumber k is there some discrepancy due to the particle- 
grid effects. 

We performed nonlinear test runs in the collisionless drift 
wave regime. When the E x B nonlinearies are included in 
the three equations (11)-(13), the saturation level density 
fluctuations obeys the mixing length estimate ~/no,~ 
l/k± L,. This result was also checked against an identical 
run done with a code that treats the ions with full dynamics. 
We note that the term propertional to kl x k2./~ in the 

vorticity equation tends to generate finite kx (for ky = 0) 
components of [q~kl. 

The model can be expanded to include the nonlinearities 
due to the density perturbation on the left-hand side of 
Eq. (1). We have already noted in Section 4 that this code 
may be used to assess the relative importance of the electron 
and ion nonlinearities [32, 33]. Finally, we are employing 
the code to study trapped electron m o d e s i n  sheared 
geometry [34]. 

APPENDIX A: MODEL DISPERSION RELATION 
AND FLUCTUATION SPECTRUM 

We calculate the dispersion relation for the linearized 
model equations, and find expressions for the fluctuation 
spectrum. We perform a test-current analysis of the 
linearized equations, similar to the calculation of Krall and 
Trivelpiece [26]. That is, the response potential q~(x, t) in 
Eq. (1) is calculated for an electron current - evil g)(x - x'), 
where x' = ' Xo + v;t. Much of the results in this section will 
pertain to the one-dimensional version of the code, so we 
perform the analysis retaining only terms with variation in 
the y-direction. Otherwise the geometry is the same as 
shown in Fig. 1. The equations will be Fourier transformed 
in space with the convention (1/2re) S dye iky, and Laplace 
transformed in time according to S dt e ion'. The test-current 
perturbed Eq. (1) is 

Nop~(~,+v.i.V)V~ - - N o V l l ( v l l i - - v L l o )  

= V l l ( v o / O )  ,~(y  - y'), (A1) 

where vit= vo/O(O ~ 1) and N o is the number density per 
unit length in the y-direction. The Fourier-Laplace 
transform is performed and, in what follows, the transient 
response of the plasma is ignored: 

NopZ kZ( - ioo + ico ,i( l + t/i) ) ( ~-~ ) 

(o) + N°ikll(Vlli-vlle)=~ o-kv'o' (A2) 

where co,i = - - ( T i / T e ) o ) , c  =-kcTi/eBLn. The ion 
response is calculated using Eqs. (2) and (3), 

ektl + ktl TII) Tikll 
t~lE i = ~0 k "1- n (1) 

o ) m  i t o m  i o ) m i t / o  
(A3) 

T}I) co,i (e(pk'] 2 ~_! 
= - - -  t/iTe + 3  Ti viii. (A4) 
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The equations (6), (7), and (8) for the electrons correspond 
to a lagrangian solution (or solution by characteristics), of 
a form of the drift kinetic equation (DKE) 

c V e [~,+v, i  .V~+~/~xVq~. x+mV,,~o~,]  

x fe(x, Vii, t )=0 ,  (A5) 

where f(x, vli , t) is the distribution function. This is 
appropriate for our model with zero electron Larmor 
radius, including full dynamics parallel to the magnetic field 
and E × B drifts in the perpendicular direction. The electron 
response can be calculated by linearizing the DKE about a 
Maxwellian distribution, 

fe  = f0  + f (1) , (A6)  

where 

k Ps 1 -  co ( l+r/ i)  co2_.$klrCs/Z2 2 2 

co 
(All)  

The dispersion function e(k, co) then determines the linear 
normal modes of the system we are describing. 

One important test of a code is to compare the fluctuating 
energy k spectrum for a homogeneous stable plasma with 
the theoretical estimate. We first evaluate the fluctuating 
energy in terms of the average over the maxwellian 
distribution of particles, 

wherefo = 1 / (x /~  ve)e @2~, and v~ is the thermal velocity. 
We evaluate the perturbed distribution function 

f ( l )=  (eq~k'~( 1 c o - c o , e \  
re/  z°' 

8re - dy' du;i fo(v;]) E(y, y', v;i) E*(y, y', v;i), 

(A12) 

(A7) where the electric field due to the test current is 

and then the perturbed electron density and parallel 
velocity, 

f dk iTeke ik(y y') 
E(y, y', vll ) = 27r eNoe(k, kv'o)" (A13) 

n ( 1 ) = n o f f  (1) dull 

c o  - -  c o  , e 
+ (As) = , o \  re / \  ~/~lkll uo Z 

IkllL Ve 

Ulle =ffluIi dull 

= (e k) co -co ,o  

( co Z (  co 2)) (A9) 
x 1 + x / ~  iklll ve x/_~lkll[ U , 

Then, defining 

(E2(Y) )  ( d k  
W(k), 8~ J 

we obtain the fluctuating energy spectral density 

W(k) 8rcNoOee dco f ° co k (A14) 
_o~ I~(k, co)l 2" 

A closed form for the frequency integral could not be 
obtained, however, we can estimate the result by taking the 
high frequency approximation of the dispersion relation. In 
the limit Ico/x//2 kllvel >> 1, 

where Z(¢) = (1/x//-~) f _~  dx e x2/(x-  ~) is the Plasma 
Dispersion Function [23]. Combining Eqs. (A2), (A3), 
(A4), (A8), and (A9) we arrive at an expression for the 
perturbed potential, 

iTekv'oe ikY6 
rPk(CO) = 21reNo(cO -- kv'o) e(k, co)co' (A10) 

and writing 

Z ~  

+ i x//~ exp[ --(co/x/2 kll vo)21, 

e(k, co) = ~1 + ice 

(A15) 

581/102/1-13 
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we have 

( 02~e  ff2i'~ 
81 =k2p 2 1 co2 j 

co exp[_(r~/x/~kl l  G)2]. 
~2= Iklll vo 

(A16) 

The high frequency root is approximately given by 

cok= +00x/-~--~O~. The contribution to the argument of 
Eq. (A14) can be estimated by expanding e about cok [35]. 

1 
6~x(Uf) = " ~ X  {(Ui+ 1/2-- lUi+ 1/21) Ti+l  

-I- (U i + 1/2 + [/'/i + 1/21 --  Ui- 1/2 "~ [Ui- 1/21 ) Ti 

--(ui-1/2+ lui-1/2] ) r i -1}  (B3) 

1 
a*(vf) = ~ {(vj+ 1/2 --  ]Vj+ 1/21) Tj+I 

+ (/)j+ 1/2-I-[Vj+l/21--Vj--1/2-t-[vj-1/21) T¢ 

- (Vj_l /2+ Ivj_ml ) Tj 1}, (B4) 

1 7[ 
I m ~ ~  [6(co+O Ox/-~--~i~OOd+6(co-O Ox/-O--~O~.)]. 

(A17) 

With this, the integral Eq. (32) can be performed 

1 ( o ~  2 
W(k)=-~ \--~/ L ,  (A18) 

where coi= x/4rcNoeZ/mi • For a fully electrostatic code that 
solves Poisson's equation V2@ = - 4 r c p ,  where p is the 
charge density, the low k spectral density (k2o ,~ 1 ) is equal 
to (1/2) T e. Thus, the use of the quasi-neutral hybrid model 
in the present study gives rise to a further noise reduction 
factor ((2ffcoi) 2. This is the same result as obtained by 
Krommes et aL [24] for the gyrokinetic model. For 
Ik±psl "> 1 we have e(k, co) 2 2 ~ k i p  s and in that limit 
Eq. (A14) gives W(k)= ½ (f2i/coi) 2 Te/(k±ps) 2. 

APPENDIX B: TREATMENT OF THE 
NONLINEAR TERMS 

and where in our normalized units A x = A y = A .  These 
expressions have the advantage of not having to use Fortran 
IF statements in their coding. The face centered transport 
velocities are evaluated as 

ui+ 1/2 : -Oyqgl i+ 1/2 

1 
= 4Ay ( - q~i'J+ 1 - cPi+ 1,j+ 1 + ~Oi, j-- 1 "~- ~Oi+ 1,j-- 1 ), 

b/i-- 1/2 = --0y g°l i -  1/2 

1 
= 4 A y ( - ~ ° i , j + l - ~ ° i  1 , j+ l+q) i , j - l+~° i - l , j  1), 

(B5) 
"Vj+ 1/2 = G~01s+ 1/2 

1 
=4Ax ((~i+ l'J-[- (~9i+ l ' J+  1 -- ~9i l'J--~Oi--l"j--1)' 

V j_ l /2:C~x~l j  1/2 

1 
- - 4 A x ( q ) i + l , j + q ) i + l , j - l - - ~ O i  1 , j - -~Oi - l , j -1 )  • 

The upwind differencing of the convective nonlinearities 
is discussed in Ref. [30]. In our case we used a variation 
obtained in private communication with K. E. Torrance of 
Cornell University. This is a conservative form, which is 
called conserving upwind differencing or the "second 
upwind method." The relevant E x B nonlinearities in 
Eqs. (11), (12), and (13) can be written in the general 
conservative form, 

This treatment of the convection is only first order accurate 
in space, (9 [Ax, Ay]. It has the advantage that for numerical 
stability there are no formal mesh size restrictions. It does 
introduce artificial viscosity, however in our application 
only the low order modes of the (kx, ky) spectrum are 
excited, so no serious errors arise. Under conditions where 
many modes are excited, one should use grid refinement, or 
higher order techniques to check the numerical accuracy. 

a , f =  - V . u f +  .. . ,  (B1) 
ACKNOWLEDGMENTS 

where u =/~ x Vg. In the approximation Ikll/k±l ~ 1, the 
finite difference form for the right-hand side is expressed 

~,Lj  = - G  ( . f )  - G (vf), (B2) 

where (i, j )  refers to (x, y) gridpoint position, and 
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